4.3 Article Proceedings Paper

[Ru(bpy)3]2+* and other remarkable metal-to-ligand charge transfer (MLCT) excited states

期刊

PURE AND APPLIED CHEMISTRY
卷 85, 期 7, 页码 1257-1305

出版社

WALTER DE GRUYTER GMBH
DOI: 10.1351/PAC-CON-13-03-04

关键词

excited-state chemistry; metal-to-ligand charge transfer; photochemistry; tris(bipyridine)ruthenium(II) cation

资金

  1. U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-FG02-06ER15788]

向作者/读者索取更多资源

In 1974, the metal-to-ligand charge transfer (MLCT) excited state, [Ru(bpy)3]2(+*), was shown to undergo electron transfer quenching by methylviologen dication (MV2+), inspiring a new approach to artificial photosynthesis based on molecules, molecular-level phenomena, and a modular approach. In the intervening years, application of synthesis, excited-state measurements, and theory to [Ru(bpy)(3)](2+)* and its relatives has had an outsized impact on photochemistry and photophysics. They have provided a basis for exploring the energy gap law for nonradiative decay and the role of molecular vibrations and solvent and medium effects on excited-state properties. Much has been learned about light absorption, excited-state electronic and molecular structure, and excited-state dynamics on timescales from femtoseconds to milliseconds. Excited-state properties and reactivity have been exploited in the investigation of electron and energy transfer in solution, in molecular assemblies, and in derivatized polymers and oligoprolines. An integrated, hybrid approach to solar fuels, based on dye-sensitized photoelectrosynthesis cells (DSPECs), has emerged and is being actively investigated.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据