4.3 Article

From supramolecular chemistry to nanotechnology: Assembly of 3D nanostructures

期刊

PURE AND APPLIED CHEMISTRY
卷 81, 期 12, 页码 2225-2233

出版社

WALTER DE GRUYTER GMBH
DOI: 10.1351/PAC-CON-09-07-04

关键词

nanoparticles; nanoparticle arrays; self-assembly; self-assembled monolayer; supramolecular chemistry

资金

  1. Council for Chemical Sciences of the Netherlands Organization for Scientific Research (NWO-CW) [700.52.423]

向作者/读者索取更多资源

Fabricating well-defined and stable nanoparticle crystals in a controlled fashion receives growing attention in nanotechnology. The order and packing symmetry within a nanoparticle crystal is of utmost importance for the development of materials with unique optical and electronic properties. To generate stable and ordered 3D nanoparticle structures, nanotechnology is combined with supramolecular chemistry to control the self-assembly of 2D and 3D receptor-functionalized nanoparticles. This review focuses on the use of molecular recognition chemistry to establish stable, ordered, and functional nanoparticle structures. The host-guest complexation of beta-cyclodextrin (CD) and its guest molecules (e.g., adamantane and ferrocene) are applied to assist the nanoparticle assembly. Direct adsorption of supramolecular guest- and host-functionalized nanoparticles onto (patterned) CD self-assembled monolayers (SAMs) occurs via multivalent host-guest interactions and layer-by-layer (LbL) assembly. The reversibility and fine-tuning of the nanoparticle-surface binding strength in this supramolecular assembly scheme are the control parameters in the process. Furthermore, the supramolecular nanoparticle assembly has been integrated with top-down nanofabrication schemes to generate stable and ordered 3D nanoparticle structures, with controlled geometries and sizes, on surfaces, other interfaces, and as free-standing structures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据