4.3 Article

Epigallocatechin-3-gallate augments antioxidant activities and inhibits inflammation during bleomycin-induced experimental pulmonary fibrosis through Nrf2-Keap1 signaling

期刊

PULMONARY PHARMACOLOGY & THERAPEUTICS
卷 22, 期 3, 页码 221-236

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.pupt.2008.12.010

关键词

EGCG; Bleomycin; Pulmonary fibrosis; Nrf2; Keap1; Inflammation

向作者/读者索取更多资源

The mechanism involved in the enhancement of antioxidant activities and resolved inflammation after epigallocatechin-3-gallate (EGCG) treatment during bleomycin-induced pulmonary fibrosis is investigated in this study. The levels of reactive-oxygen species (ROS), lipid peroxidation (LPO), hydroxyproline and the activity of myeloperoxidase (MPO) were increased due to bleomycin challenge and were brought back to near normal status on EGCG supplementation. The decreased antioxidant status due to bleomycin challenge was also restored upon EGCG treatment. Bleomycin-induced rats showed increased cell counts as compared to control and EGCG-treated rats. Histopathological analysis showed increased inflammation and alveolar damage, while picrosirius red staining showed an increased collagen deposition in bleomycin-challenged rats that were decreased upon EGCG treatment. Immunohistochemical, immunofluorescent and immunoblot studies revealed that EGCG supplementation decreased the levels of nuclear factor-kappa B (NF-kappa B), tumor necrosis factor-alpha (TNF-alpha) and interleukin-1 beta (IL-1 beta), which were increased upon bleomycin induction. The declined activities of Phase 11 enzymes such as glutathione-S-transferase (GST) and NAD(P)H:quinone oxidoreductase 1 (NQO1) in bleomycin-injured rats were restored upon EGCG treatment. Confocal microscopy, immunoblot and RT-PCR studies confirm that EGCG is a potent inducer of NF-E2-related factor 2 (Nrf2). Expression of Kelch like ECH-associated protein (Keap)-1, a vital factor in Nrf2 signaling cascade was analyzed by immunoblotting. However, there was no significant change in the expression of Keap1 in control and experimental groups. This study demonstrates the involvement of Nrf2-Keap1 signaling through which EGCG enhances antioxidant activities and Phase 11 enzymes with subsequent restraint inflammation during bleomycin-induced pulmonary fibrosis. (C) 2008 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据