4.3 Article

Preconditioning by inhaled nitric oxide prevents hyperoxic and ischemia/reperfusion injury in rat lungs

期刊

PULMONARY PHARMACOLOGY & THERAPEUTICS
卷 21, 期 2, 页码 418-429

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.pupt.2007.10.005

关键词

Glycogen synthase kinase; Hyperoxia; Lung permeability; Mitogen-activated protein kinases; Nitric oxide; Preconditioning; Protein kinase B

向作者/读者索取更多资源

Since the generation of nitric oxide (NO) is an essential step in the trigger phase of ischemic preconditioning, short-term inhalation of NO before ischemia should ameliorate ischemia/reperfusion (I/R) injury of the lung. We tested this hypothesis in high oxygen (>99%) ventilated rats in order to additionally evaluate compatibility of NO and exposure to hyperoxia. Male adult Sprague-Dawley rats inhaled NO (15 ppm, 10 min) before the left lung hilum was clamped for 1 h, and the reperfusion phase was observed for 4 h (NO group). Animals in the I/R group underwent the same treatment, but without NO inhalation. A third group without I/R served as time-matched controls. Animals in the I/R group showed severe I/R injury in terms of arterial pO(2) (apO(2)), which was reduced to 22% of surgical controls (SCs) at time point 30 min reperfusion, and increased endothelial permeability (Evans blue procedure). The pretreatment with NO attenuated these effects. The pO(2) after 4 h reperfusion was still 3.0-fold higher in the NO group compared to I/R. In contrast, the I/R- and hyperoxia-induced invasion of leukocytes, as determined by measuring myeloperoxidase (MPO) activity, was not affected by NO. These data were correlated with the activity of major cellular signaling pathways by measuring the phosphorylation at activating and inhibitory sites of extracellular-signal regulated kinase (ERK), c-Jun N-terminal kinase (JNK), p38, protein kinase B (AKT), and glycogen synthase kinase 3 beta (GSK-3 beta), and by determination of cGMP in plasma and lung tissue. Inhalation of NO partly prevented the loss of activation by I/R and hyperoxic ventilation of ERK, JNK, and AKT, and it reduced the I/R-induced activation of GSK-3 beta. The level of cGMP in plasma and lung tissue was increased in the NO group after 4 h reperfusion. In conclusion, application of inhaled NO in the preconditioning mode prevented I/R injury in the rat lung without interfering effects of hyperoxic ventilation. The effects of NO on cellular signaling pathways resemble mechanisms of ischemic preconditioning, but further studies have to evaluate the physiological relevance of these results. (C) 2007 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据