4.6 Article

OptogenSIM: a 3D Monte Carlo simulation platform for light delivery design in optogenetics

期刊

BIOMEDICAL OPTICS EXPRESS
卷 6, 期 12, 页码 4859-4870

出版社

OPTICAL SOC AMER
DOI: 10.1364/BOE.6.004859

关键词

-

资金

  1. University of Wisconsin [UDDS B19-2510]
  2. Laboratory for Optical and Computational Instrumentation (LOCI)

向作者/读者索取更多资源

Optimizing light delivery for optogenetics is critical in order to accurately stimulate the neurons of interest while reducing nonspecific effects such as tissue heating or photodamage. Light distribution is typically predicted using the assumption of tissue homogeneity, which oversimplifies light transport in heterogeneous brain. Here, we present an open-source 3D simulation platform, OptogenSIM, which eliminates this assumption. This platform integrates a voxel-based 3D Monte Carlo model, generic optical property models of brain tissues, and a well-defined 3D mouse brain tissue atlas. The application of this platform in brain data models demonstrates that brain heterogeneity has moderate to significant impact depending on application conditions. Estimated light density contours can show the region of any specified power density in the 3D brain space and thus can help optimize the light delivery settings, such as the optical fiber position, fiber diameter, fiber numerical aperture, light wavelength and power. OptogenSIM is freely available and can be easily adapted to incorporate additional brain atlases. (C) 2015 Optical Society of America

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据