4.1 Article

Unraveling the interactions between cold atmospheric plasma and skin-components with vibrational microspectroscopy

期刊

BIOINTERPHASES
卷 10, 期 2, 页码 -

出版社

AIP Publishing
DOI: 10.1116/1.4919610

关键词

-

资金

  1. BMBF [FKZ 05K10PCA]
  2. DFG [PAK816]
  3. DFG (program Grossgerate der Lander)

向作者/读者索取更多资源

Using infrared and Raman microspectroscopy, the authors examined the interaction of cold atmospheric plasma with the skin's built-in protective cushion, the outermost skin layer stratum corneum. Following a spectroscopic analysis, the authors could identify four prominent chemical alterations caused by plasma treatment: (1) oxidation of disulfide bonds in keratin leading to a generation of cysteic acid; (2) formation of organic nitrates as well as (3) of new carbonyl groups like ketones, aldehydes and acids; and (4) reduction of double bonds in the lipid matter lanolin, which resembles human sebum. The authors suggest that these generated acidic and NO-containing functional groups are the source of an antibacterial and regenerative environment at the treatment location of the stratum corneum. Based upon the author's results, the authors propose a mechanistic view of how cold atmospheric plasmas could modulate the skin chemistry to produce positive long-term effects on wound healing: briefly, cold atmospheric plasmas have the potential to transform the skin itself into a therapeutic resource. (C) 2015 American Vacuum Society.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据