4.4 Article

High electronic couplings of single mesitylene molecular junctions

期刊

出版社

BEILSTEIN-INSTITUT
DOI: 10.3762/bjnano.6.251

关键词

break junction; charge transport; mesitylene; single molecular junction; scanning tunnelling microscopy (STM)

资金

  1. MEXT [15J11830, 24245027, 26102013]
  2. Asahi Glass foundation
  3. Grants-in-Aid for Scientific Research [26288070, 15J11830, 26102013, 26620122] Funding Source: KAKEN

向作者/读者索取更多资源

We report on an experimental analysis of the charge transport properties of single mesitylene (1,3,5-trimethylbenzene) molecular junctions. The electronic conductance and the current-voltage characteristics of mesitylene molecules wired into Au electrodes were measured by a scanning tunnelling microscopy-based break-junction method at room temperature in a liquid environment. We found the molecular junctions exhibited two distinct conductance states with high conductance values of ca. 10(-1)G(0) and of more than 10(-3)G(0) (G(0) = 2e(2)/h) in the electronic conductance measurements. We further performed a statistical analysis of the current-voltage characteristics of the molecular junctions in the two states. Within a single channel resonant tunnelling model, we obtained electronic couplings in the molecular junctions by fitting the current-voltage characteristics to the single channel model. The origin of the high conductance was attributed to experimentally obtained large electronic couplings of the direct p-bonded molecular junctions (ca. 0.15 eV). Based on analysis of the stretch length of the molecular junctions and the large electronic couplings obtained from the I-V analysis, we proposed two structural models, in which (i) mesitylene binds to the Au electrode perpendicular to the charge transport direction and (ii) mesitylene has tilted from the perpendicular orientation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据