4.4 Article

Isolation and characterization of two VpYABBY genes from wild Chinese Vitis pseudoreticulata

期刊

PROTOPLASMA
卷 250, 期 6, 页码 1315-1325

出版社

SPRINGER WIEN
DOI: 10.1007/s00709-013-0514-y

关键词

Chinese wild Vitis; Grapevine; Adaxial-abaxial polarity; YABBY gene family

资金

  1. Ministry of Agriculture, China [2011-G21]
  2. Program for New Century Excellent Talents in University [NCET-10-0692]
  3. Program for Young Talents in Northwest AF University [QN2011052]

向作者/读者索取更多资源

The establishment of abaxial-adaxial polarity is an important feature of the development of lateral organs in plants. Members of the YABBY gene family may be specific to seed-plant-specific transcriptional regulators that play critical roles in promoting abaxial cell fate in the model eudicot, Arabidopsis thaliana. However, recent study has shown that the roles of YABBY genes are not conserved in the development of angiosperms. The establishment of abaxial-adaxial polarity has not been studied in perennial fruit crops. Grapes are an important fruit crop in many regions of the world. Investigating YABBY genes in grapevines should help us to discover more about the key genetic and molecular pathways in grapevine development. To understand the characterization of YABBY genes in grapevines, two YABBY genes, VpYABBY1 (GenBank accession No. KC139089) and VpYABBY2 (GenBank accession No. KC139090), were isolated from the wild Chinese species Vitis pseudoreticulata. Both of these encode YABBY proteins. Sequence characterization and phylogenetic analyses show that VpYABBY1 is group classified into the FIL subfamily while VpYABBY2 is a member of the YAB2 subfamily of Arabidopsis thaliana. Subcellular localization analysis indicates that VpYABBY1 and VpYABBY2 proteins are localized in the nucleus. Tissue specific expressional analysis reveals that VpYABBY1 is expressed strongly in young leaves of grape but only weakly in the mature leaves. Meanwhile, VpYABBY2 is expressed in grape stems, flowers, tendrils, and leaves. Transgenic Arabidopsis plants ectopically expressing VpYABBY1 caused the partial abaxialization of the adaxial epidermises of leaves, behaving similarly to those over-expressing FIL or YAB3 with abaxialized lateral organs. By contrast, ectopic expression of VpYABBY2 in Arabidopsis did not cause any alteration in the adaxial-abaxial polarity. Sequence characterization and phylogenetic analysis revealed that VpYABBY1 and VpYABBY2 are group-classified into two different subfamilies. They have diverged functionally in the control of lateral organ development. VpYABBY1 may have a function in leaf development, while VpYABBY2 may play a specific role in carpel development and grape berry morphogenesis. It is further possible that during the evolution of different species, YABBY family members have preserved different expression regulatory systems and functions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据