4.0 Article

Secondary Structure Models for the Internal Transcribed Spacer (ITS) Region 1 from Symbiotic Dinoflagellates

期刊

PROTIST
卷 161, 期 3, 页码 434-451

出版社

ELSEVIER GMBH
DOI: 10.1016/j.protis.2009.11.004

关键词

coral reef; compensatory base change(CBC); endosymbiont; ITS1; ribosome; rRNA; pre-rRNA; processing; pseudogene; Symbiodinium

向作者/读者索取更多资源

Ribosomal genes and their spacers have been extensively utilized to examine the biodiversity and phylogenetics of protists. Among these, the internal transcribed spacer regions 1 and 2 (ITS1 and ITS2) are known to form secondary structures that are critically important for proper processing of the pre-rRNA into mature ribosomes. Although the secondary structure of ITS2 has been widely investigated, considerably less is known about ITS1 and its secondary structure. Here, secondary structures of the ITS1 were modeled for 46ITS types'' from Symbiodinium, a diverse dinoflagellate genus that forms symbioses with many protists and metazoans, using comparative phylogenetic and minimum free energy approaches. The predicted ITS1 secondary structures for each Symbiodinium type'' were highly stable (Delta G=-46.40 to -85.30 kcal mol(-1) at 37 degrees C) and consisted of an open loop with five helices separated by single-stranded regions. Several structural characteristics were conserved within monophyletic sub-groups, providing additional support for the predicted structures and the relationships within this genus. Finally, the structures were applied to identify potential pseudogenes from five Symbiodinium ITS1 datasets. Consequently, ITS1 secondary structures are useful in understanding the biology and phylogenetics, as well as recognizing and excluding questionable sequences from datasets, of protistssuchas Symbiodinium. (C) 2009 Elsevier GmbH. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据