4.1 Article

Synaptic proteome changes in the superior frontal gyrus and occipital cortex of the alcoholic brain

期刊

PROTEOMICS CLINICAL APPLICATIONS
卷 3, 期 6, 页码 730-742

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/prca.200800202

关键词

Human brain; OC; SFG; Synapse

资金

  1. NIH [AA12404]

向作者/读者索取更多资源

Cognitive deficits and behavioral changes that result from chronic alcohol abuse are a consequence of neuropathological changes that alter signal transmission through the neural network. To focus on the changes that occur at the point of connection between the neural network cells, synaptosomal preparations from post-mortem human brain of six chronic alcoholics and six non-alcoholic controls were compared using 2-D differential in-gel electrophoresis (DIGE). Functionally affected and spared regions (superior frontal gyrus, SFG, and occipital cortex, OC, respectively) were analyzed from both groups to further investigate the specific pathological response that alcoholism has on the brain. Forty-nine proteins were differentially regulated between the SFG of alcoholics and the SFG of controls and 94 proteins were regulated in the OC with an overlap of 23 proteins. Additionally, the SFG was compared to the OC within each group (alcoholics or controls) to identify region-specific differences. A selection was identified by MALDI-TOF mass spectrometry revealing proteins involved in vesicle transport, metabolism, folding and trafficking, and signal transduction, all of which have the potential to influence synaptic activity. A number of proteins identified in this study have been previously related to alcoholism; however, the focus on synaptic proteins has also uncovered novel alcoholism-affected proteins. Further exploration of these proteins will illuminate the mechanisms altering synaptic plasticity, and thus neuronal signaling and response, in the alcoholic brain.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据