4.5 Article

Proteomic analysis of hypoxia-induced tube breakdown of an in vitro capillary model composed of HUVECs:: Potential role of p38-regulated reduction of HSP27

期刊

PROTEOMICS
卷 8, 期 14, 页码 2897-2906

出版社

WILEY
DOI: 10.1002/pmic.200800055

关键词

2-DE; heat shock proteins; human umbilical vein endothelial cells; western blot analysis

向作者/读者索取更多资源

We recently reported that hypoxia could induce the breakdown of capillary-like tubes formed by human umbilical vein endothelial cells (HUVECs) and that this breakdown was regulated by p38 and not by a caspase cascade, although the exact molecular mechanisms remain unknown. The aim of this study was to identify proteins that regulated hypoxia-induced tube breakdown through p38-regulated and caspase-independent mechanisms. The involvement of adhesion proteins, integrins, VE-cadherin, PECAM-1, and occludin was first investigated. Although some of these proteins decreased after hypoxia, none of them met the conditions of being quantitatively restored by p38 inhibition but not by caspase inhibition. We then conducted 2-D DIGE coupled with MALDI-TOF/TOF-MS to identify altered protein expression. The differential proteomic analysis of tube-forming HUVECs treated with normoxia or hypoxia and treated with hypoxia in the presence or absence of SB203580, a specific p38 inhibitor, revealed the involvement of heat shock proteins in this tube breakdown. We also confirmed that the amount of HSP27 and HSP70 changed in a p38-regulated and caspase-independent manner during hypoxia. Knocking down HSP27 expression using RNAi further augmented hypoxia-induced tube breakdown. Taken together, it was shown that p38-regulated and caspase-independent reduction of HSP27 plays an important role in hypoxia-induced tube breakdown.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据