4.3 Article

Motion of transfer RNA from the A/T state into the A-site using docking and simulations

期刊

PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS
卷 80, 期 11, 页码 2489-2500

出版社

WILEY
DOI: 10.1002/prot.24131

关键词

A; T transfer RNA; ribosome; docking; simulations; Maxwell's demon molecular dynamics; structural fidelity

向作者/读者索取更多资源

The ribosome catalyzes peptidyl transfer reactions at the growing nascent polypeptide chain. Here, we present a structural mechanism for selecting cognate over near-cognate A/T transfer RNA (tRNA). In part, the structural basis for the fidelity of translation relies on accommodation to filter cognate from near-cognate tRNAs. To examine the assembly of tRNAs within the ribonucleicriboprotein complex, we conducted a series of all-atom molecular dynamics (MD) simulations of the entire solvated 70S Escherichia coli ribosome, along with its associated cofactors, proteins, and messenger RNA (mRNA). We measured the motion of the A/T state of tRNA between initial binding and full accommodation. The mechanism of rejection was investigated. Using novel in-house algorithms, we determined trajectory pathways. Despite the large intersubunit cavity, the available space is limited by the presence of the tRNA, which is equally large. This article describes a structural gate, formed between helices 71 and 92 on the ribosomal large subunit, which restricts tRNA motion. The gate and the interacting protein, L14, of the 50S ribosome act as steric filters in two consecutive substeps during accommodation, each requiring: (1) sufficient energy contained in the hybrid tRNA kink and (2) sufficient energy in the WatsonCrick base pairing of the codonanticodon. We show that these barriers act to filter out near-cognate tRNA and promote proofreading of the codonanticodon. Since proofreading is essential for understanding the fidelity of translation, our model for the dynamics of this process has substantial biomedical implications. Proteins 2012. (c) 2012 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据