4.3 Article

Molecular dynamics study of small molecule inhibitors of the Bcl-2 family

期刊

PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS
卷 79, 期 9, 页码 2624-2636

出版社

WILEY-BLACKWELL
DOI: 10.1002/prot.23083

关键词

Bcl-2; obatoclax; apoptosis; Mcl-1; Bcl-xL; ABT-737; molecular dynamics; docking

资金

  1. McGill University
  2. National Research Council of Canada

向作者/读者索取更多资源

We carried out docking and molecular dynamics simulations on ABT-737 and obatoclax, which are inhibitors of the Bcl-2 family of proteins. We modeled the binding mode of ABT-737 with Bcl-x(L), Bcl-2, and Mcl-1 and examined their dynamical behavior. We found that the binding of the chlorobiphenyl end of ABT-737 was quite stable across all three proteins. However, the phenylpiperazine linker group was dramatically more mobile in Mcl-1 compared to either Bcl-x(L) or Bcl-2. The S-phenyl group at the p4 binding site was well-anchored in Bcl-x(L) and Bcl-2 but was somewhat more mobile in Mcl-1 although the phenyl ring itself on average stayed close to the p4 binding site in Mcl-1. This greater mobility is likely due to the greater openness of the p3 and p4 binding sites on Mcl-1. The calculated binding free energies were consistent with the much weaker binding affinity of ABT-737 for Mcl-1. Obatoclax was predicted to bind at the p1 and p2 binding sites of Mcl-1 and the binding mode was quite stable during the molecular dynamics simulation with Mcl-1 wrapping around the molecule. The modeled binding mode suggests that obatoclax is able to inhibit all three proteins because it makes use of the p1 and p2 binding sites alone, which is a fairly narrow groove in all three proteins unlike the p4 binding site, which is much broader in Mcl-1.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据