4.3 Article

Prediction of protein binding regions

期刊

出版社

WILEY
DOI: 10.1002/prot.22926

关键词

protein-protein interactions; protein aggregation; molecular simulation; genetic engineering; spatial aggregation propensity

资金

  1. National Center for Supercomputing Applications (NCSA) [MCB060103]
  2. Novartis Pharma AG

向作者/读者索取更多资源

Identifying protein binding sites provides important clues to the function of a protein. Experimental methods to identify the binding sites such as determining the crystal structures of protein complexes are extremely laborious and expensive. Here, we present a computational technique called spatial aggregation propensity (SAP) based on molecular simulations to predict protein binding sites. We apply this technique to two model proteins, an IgG1 antibody and epidermal growth factor receptor (EGFR) and demonstrate that SAP predicts protein binding regions with very good accuracy. In the case of the IgG1 antibody, SAP accurately predicts binding regions with the Fc-receptor, protein-A, and protein-G. For EGFR, SAP accurately predicts binding regions with EGF, TGF alpha, and with another EGFR. The resolution of SAP is varied to obtain a detailed picture of these binding sites. We also show that some of these binding sites overlap with protein self-aggregation prone regions. We demonstrate how SAP analysis can be used to engineer the protein to remove unfavorable aggregation prone regions without disturbing protein binding regions. The SAP technique could be also used to predict the yet unknown binding sites of numerous proteins, thereby providing clues to their function.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据