4.3 Article

Prediction of turn types in protein structure by machine-learning classifiers

期刊

出版社

WILEY
DOI: 10.1002/prot.22164

关键词

bioinformatics; kernel function; prediction; probabilistic neural network; secondary structure; self-organizing map; support vector machine; turn classification

资金

  1. Beilstein-Institut zur Forderung der Chemischen Wissenschaften
  2. Frankfurt am Main

向作者/读者索取更多资源

We present machine learning approaches for turn prediction from the amino acid sequence. Different turn classes and types were considered based on a novel turn classification scheme. We trained an unsupervised (self-organizing map) and two kernel-based classifiers, namely the support vector machine and a probabilistic neural network. Turn versus non-turn classification was carried out for turn families containing intramolecular hydrogen bonds and three to six residues. Support vector machine classifiers yielded a Matthews correlation coefficient (mcc) of similar to 0.6 and a prediction accuracy of 80%. Probabilistic neural networks were developed for beta-turn type prediction. The method was able to distinguish between five types of beta-turns yielding mcc > 0.5 and at least 80% overall accuracy. We conclude that the proposed new turn classification is distinct and well-defined, and machine learning classifiers are suited for sequence-based turn prediction. Their potential for sequence-based prediction of turn structures is discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据