4.3 Article

Complexes of HIV-1 integrase with HAT proteins: Multiscale models, dynamics, and hypotheses on allosteric sites of inhibition

期刊

出版社

WILEY
DOI: 10.1002/prot.22399

关键词

HIV-1 integrase; molecular dynamics; principal component analysis; acetyltransferase; protein-protein docking

资金

  1. Italian Ministry for University and Research [RBLA03ER38]

向作者/读者索取更多资源

A new and very promising strategy for HIV drug discovery consists in blocking the multiple functional interactions between HIV-1 integrase (IN) and its cellular cofactors. At present, this line of action is hindered by the absence of three-dimensional structures of IN in complex with any of them. In this article, we developed a full-length three-dimensional structure of IN, including the highly flexible terminal residues 270-288, which are not experimentally solved. Additionally, we built models of IN complexed to the human acetyltransferases GCN5 and p300 based on available structural and mutagenesis data. Then, we studied the dynamical behavior of these models by means of the Coarse-Grained Molecular Dynamics (CGMD) and Essential Dynamics (ED) to locate and characterize the nature of the largest collective motions. We found correlated motions involving distant regions of IN. Moreover, we found that these are influenced by the binding with the acetyltransferases (HATs). Taken together these findings suggest a way to affect the acetyltransferase binding by an allosteric type of inhibition and provide an important new approach for the drug design against HIV disease.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据