4.3 Article

Shelling the Voronoi interface of protein-protein complexes reveals patterns of residue conservation, dynamics, and composition

期刊

出版社

WILEY
DOI: 10.1002/prot.22381

关键词

protein-protein complex; interface activity; hotspots; conservation; voronoi models

资金

  1. INRIA Reflexll cooperative project
  2. Flurnan Fronticrs Science Program

向作者/读者索取更多资源

The accurate description and analysis of protein-protein interfaces remains a challenging task. Traditional definitions, based on atomic contacts or changes in solvent accessibility, tend to over- or underpredict the interface itself and cannot discriminate active from less relevant parts. We here extend a fast, parameter-free and purely geometric definition of protein interfaces and introduce the shelling order of Voronoi facets as a novel measure for an atom's depth inside the interface. Our analysis of 54 protein-protein complexes reveals a strong correlation between Voronoi Shelling Order (VSO) and water dynamics. High Voronoi Shelling Orders coincide with residues that were found shielded from bulk water fluctuations in a recent molecular dynamics study. Yet, VSO predicts such dry residues without consideration of forcefields or dynamics at a dramatically reduced cost. The interface center is enriched in hydrophobic residues. Yet, this hydrophobic centering is not universal and does not mirror the far stronger geometric bias of water fluxes. The seemingly complex water dynamics at protein interfaces appears thus largely controlled by geometry. Sequence analysis supports the functional relevance of dry residues and residues with high VSO, both of which tend to be more conserved. On closer inspection, the spatial distribution of conservation argues against the arbitrary dissection into core or rim and thus refines previous results. Voronoi Shelling Order reveals clear geometric patterns in protein interface composition, function and dynamics and facilitates the comparative analysis of protein-protein interactions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据