4.3 Article

The selenoproteome of Clostridium sp OhILAs: Characterization of anaerobic bacterial selenoprotein methionine sulfoxide reductase A

期刊

PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS
卷 74, 期 4, 页码 1008-1017

出版社

WILEY-LISS
DOI: 10.1002/prot.22212

关键词

MsrA; selenoproteins; oxidoreductase; SECIS elements; thioredoxin

资金

  1. Korea Science and Engineering Foundation [R13-2005-005-010044]
  2. National Institutes of Health (NIH) [AG021518]
  3. Yeungman University
  4. NATIONAL INSTITUTE ON AGING [R01AG021518] Funding Source: NIH RePORTER

向作者/读者索取更多资源

Selenocysteine (Sec) is incorporated into proteins in response to UGA codons. This residue is frequently found at the catalytic sites of oxidoreductases. In this study, we characterized the selenoproteome of an anaerobic bacterium, Clostridium sp. (also known as Alkaliphilus oremlandii) OhILA, and identified 13 selenoprotein genes, five of which have not been previously described. One of the detected selenoproteins was methionine sulfoxide reductase A (MsrA), an antioxidant enzyme that repairs oxidatively damaged methionines in a stereospecific manner. To date, little is known about MsrA from anaerobes. We characterized this selenoprotein MsrA which had a single Sec residue at the catalytic site but no cysteine (Cys) residues in the protein sequence. Its SECIS (Sec insertion sequence) element did not resemble those in Escherichia coli. Although with low translational efficiency, the expression of the Clostridium selenoprotein msrA gene in E. coli could be demonstrated by (75)Se metabolic labeling, immunoblot analyses, and enzyme assays, indicating that its SECIS element was recognized by the E. coli Sec insertion machinery. We found that the Sec-containing MsrA exhibited at least a 20-fold higher activity than its Cys mutant form, indicating a critical role of Sec in the catalytic activity of the enzyme. Furthermore, our data revealed that the Clostridium MsrA was inefficiently reducible by thioredoxin, which is a typical reducing agent for MsrA, suggesting the use of alternative electron donors in this anaerobic bacterium that directly act on the selenenic acid intermediate and do not require resolving Cys residues.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据