4.3 Article

Protein kinase C isozymes and their selectivity towards ruboxistaurin

期刊

出版社

WILEY
DOI: 10.1002/prot.21942

关键词

protein kinase C; selectivity; docking; ruboxistaurin; binding affinity

向作者/读者索取更多资源

Protein kinase C (PKC) isozymes are an important class of enzymes in cell signaling and as drug targets. They are involved in specific pathways and have selectivity towards certain ligands, despite their high sequence similarities. Ruboxistaurin is a specific inhibitor of PKC-beta. To understand the molecular determinants for the selectivity of ruboxistaurin, we derived the three-dimensional structures of the kinase domains of PKC-alpha, -beta I, and -zeta using homology modeling. Several binding orientations of ruboxistaurin in the binding sites of these PKC catalytic domains were analyzed, and a putative alternative binding site for PKC-zeta was identified in its kinase domain. The calculated free energy of binding correlates well with the IC50 of the inhibitor against each PKC isozyme. A residue-based energy decomposition analysis attributed the binding free energy to several key residues in the catalytic sites of these enzymes, revealing potential protein-ligand interactions responsible for ligand binding. The contiguous binding site revealed in the catalytic domain of PKC-zeta provides avenues for selective drug design. The details of structural nuances for specific inhibition of PKC isozymes are presented in the context of the three-dimensional structures of this important class of enzymes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据