4.6 Article

Structure and ion channel activity of the human respiratory syncytial virus (hRSV) small hydrophobic protein transmembrane domain

期刊

PROTEIN SCIENCE
卷 17, 期 5, 页码 813-820

出版社

COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT
DOI: 10.1110/ps.073366208

关键词

small hydrophobic protein; ion channel; infrared dichroism; molecular dynamics

向作者/读者索取更多资源

The small hydrophobic (SH) protein from the human respiratory syncytial virus (hRSV) is a glycoprotein of; 64 amino acids with one putative alpha-helical transmembrane domain. Although SH protein is important for viral infectivity, its exact role during viral infection is not clear. Herein, we have studied the secondary structure, orientation, and oligomerization of the transmembrane domain of SH (SH-TM) in the presence of lipid bilayers. Only one oligomer, a pentamer, was observed in PFO-PAGE. Using polarized attenuated total reflection-Fourier transform infrared (PATR-FTIR) spectroscopy, we show that the SH-TM is alpha-helical. The rotational orientation of SH-TM was determined by site-specific infrared dichroism (SSID) at two consecutive isotopically labeled residues. This orientation is consistent with that of an evolutionary conserved pentameric model obtained from a global search protocol using 13 homologous sequences of RSV. Conductance studies of SH-TM indicate ion channel activity, which is cation selective, and inactive below the predicted pK(a) of histidine. Thus, our results provide experimental evidence that the transmembrane domain of SH protein forms pentameric alpha-helical bundles that form cation-selective ion channels in planar lipid bilayers. We provide a model for this pore, which should be useful in mutagenesis studies to elucidate its role during the virus cycle.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据