4.2 Article

Oxidized NADH Oxidase Inhibits Activity of an ATP/NAD Kinase from a Thermophilic Archaeon

期刊

PROTEIN JOURNAL
卷 29, 期 8, 页码 609-616

出版社

SPRINGER
DOI: 10.1007/s10930-010-9284-y

关键词

NADH oxidase; ATP/NAD kinase; Oxidative stress; Conformational change; Thermophilic archaeon

向作者/读者索取更多资源

NADH oxidases (NOXs) are important enzymes in detoxifying oxidative stress and regenerating oxidized pyridine nucleotides. In the present study, a NOX from Thermococcus kodakarensis KOD1 (NOXtk) was recombinantly expressed in Escherichia coli and purified to homogeneity. NOXtk displayed NADH oxidase activity that was inhibited by oxidization. Under physiological conditions, unoxidized and oxidized NOXtk formed dimers and hexamers, respectively. Mutating the single cysteine residue Cys45 to alanine (NOXtkC45A) decreased NADH oxidase activity without affecting dimerization or hexamerization, suggesting that oligomerization does not occur through disulfide bond formation. Pull-down assay results indicated that an ATP/NAD kinase from T. kodakarensis KOD1 (ANKtk) binds to NOXtk. Use of several assays revealed that ANKtk can only bind to oxidized hexameric NOXtk, through which it inhibits ANKtk activity. Because ANKtk converts NADH to NADPH (an important factor in oxidative stress protection), a model based on in vitro result was proposed in which NOXtk hexamerization under oxic conditions inhibits both NOXtk and ANKtk activities, thereby sensitizing cells to oxidative stress-induced death.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据