4.1 Article

Computational design-based molecular engineering of the glycosyl hydrolase family 11 B. subtilis XynA endoxylanase improves its acid stability

期刊

PROTEIN ENGINEERING DESIGN & SELECTION
卷 22, 期 10, 页码 587-596

出版社

OXFORD UNIV PRESS
DOI: 10.1093/protein/gzp024

关键词

endo-beta-1,4-xylanase; in silico protein design; mutagenesis; pH-stability

资金

  1. Instituut voor de aanmoediging van Innovatie door Wetenschap en Technologic in Vlaanderen [IWT-OZM/050789]
  2. K.U. Leuven Bijzonder Onderzoeksfonds [BOF-PDM/07/170]
  3. Fonds voor Wetenschappelijk Onderzoek-Vlaanderen

向作者/读者索取更多资源

Rational protein engineering was applied to improve the limited stability of the glycosyl hydrolase family 11 (GH11) endo-beta-1,4-xylanase from Bacillus subtilis under acidic conditions. Since the pH dependence of protein stability is governed by the ionisation states of the side chains of its titrable amino acid residues, we explored the strategy of changing pH-stability profiles by altering pK(a) values of key residues through in silico designed mutations. To this end, computational predictions and molecular modelling were carried out using the recently developed pKD software package. Four endoxylanase variants, in which the pK(a) values of either Asp4 and Asp11 or His149 were targeted to shift downwards through incorporation of three to five point mutations, were generated and recombinantly expressed in the cytoplasm of Escherichia coli. All four mutants showed considerably increased functional stability at acid pH levels. They retained similar to 30-70% and similar to 75-95% of their activity after incubation at pH 3 and 4, respectively, in comparison with only similar to 23% and similar to 57%, respectively, for the wild-type enzyme under the experimental conditions. No acidophilic adaptation of the catalytic activity had occurred. In addition, their functional stability and catalytic activity profiles under different temperature and ionic strength conditions were significantly altered. These findings contribute to general understanding of the molecular mechanisms governing the pH-dependent stability of GH11 proteins, and hence they can be applied to enhance the stability and effectiveness of many GH11 endoxylanases used in industry today.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据