4.1 Article

Engineering enzymes for improved catalytic efficiency: a computational study of site mutagenesis in epothilone-B hydroxylase

期刊

PROTEIN ENGINEERING DESIGN & SELECTION
卷 22, 期 4, 页码 257-266

出版社

OXFORD UNIV PRESS
DOI: 10.1093/protein/gzn081

关键词

biocatalysis; cytochrome P450; epothilone; homology modeling; mutagenesis

向作者/读者索取更多资源

Epothilone F, 21-hydroxyl-epothilone B, is an intermediate in the synthesis of BMS-310705, an antitumor compound that has been evaluated in Phase I clinical trials. A bioconversion process utilizing the Gram-positive bacterium Amycolatopsis orientalis was used to prepare epothilone F from epothilone B. In order to improve the yield of epothilone F, a mutagenesis program was performed with the goal of engineering the epothilone-B hydroxylase (EBH) enzyme to improve the yield of epothilone F through oxidative biotransformation. The mutations in EBH increased the yield of epothilone F from 21% in the recombinant expression system to higher than 80% utilizing the best EBH mutants. The studies described here show how a homology model of EBH was used to obtain an understanding of the possible mechanism that led to improved yield of epothilone F in the mutated enzymes. A novel aspect of this study is that it provides some insight into how mutations distant from the binding site can affect enzyme activity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据