4.4 Article

Expression of Macrophage Inhibitory Cytokine-1 in Prostate Cancer Bone Metastases Induces Osteoclast Activation and Weight Loss

期刊

PROSTATE
卷 69, 期 6, 页码 652-661

出版社

WILEY
DOI: 10.1002/pros.20913

关键词

MIC-1; prostate cancer; bone metastases

资金

  1. National Health & Medical Research Council, Australia
  2. New South Wales Health Research and Development Infrastructure
  3. Department of Defense [W81XWH-05-1-0066]

向作者/读者索取更多资源

BACKGROUND. Macrophage inhibitory cytokine-1 (MIC-1) belongs to the bone morphogenic protein/transforming growth factor-beta (BMP/TGF-beta) superfamily. Serum MIC-1 concentrations are elevated in patients with advanced prostate cancer. The effects of MIC-1 on prostate cancer bone metastases are unknown. METHODS. In vitro effects of MIC-1 on osteoblast differentiation and activity were analyzed with alkaline phosphatase and mineralization assays; osteoclast numbers were counted microscopically. MIC-1 effects on TLR9 expression were studied with Western blotting. Human Du-145 prostate cancer cells were stably transfected with a cDNA encoding for mature MIC-1 or with an empty vector. The in vivo growth characteristics of the characterized cells were studied with the intra-tibial model of bone metastasis. Tumor associated bone changes were viewed with X-rays, histology, and histomorphometry. Bone formation was assayed by measuring serum PINP. RESULTS. MIC-1 induced osteoblast differentiation and activity and osteoclast formation in vitro. These effects were independent of TLR9 expression, which was promoted by MIC-1. Both MIC-1 and control tumors induced mixed sclerotic/lytic bone lesions, but MIC-1 increased the osteolytic component of tumors. Osteoclast formation at the tumor-bone interface was significantly higher in the MIC-1 tumors, whereas bone formation was significantly higher in the control mice. At sacrifice, the mice bearing MIC-1 tumors were significantly lighter with significantly smaller tumors. CONCLUSIONS. MIC-1 up-regulates TLR9 expression in various cells. MIC-1 stimulates both osteoblast and osteoclast differentiation in vitro, independently of TLR9. MIC-1 over-expressing prostate cancer cells that grow in bone induce osteoclast formation and cachexia. Prostate 69: 652-661, 2009. (C) 2009 Wiley-Liss, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据