4.8 Article

Cu-Pt Nanocage with 3-D Electrocatalytic Surface as an Efficient Oxygen Reduction Electrocatalyst for a Primary Zn-Air Battery

期刊

ACS CATALYSIS
卷 5, 期 3, 页码 1445-1452

出版社

AMER CHEMICAL SOC
DOI: 10.1021/cs501571e

关键词

Cu-Pt nanocage; electrocatalyst; oxygen reduction reaction; Zn-air battery; galvanic displacement; 3-D electrocatalytic surface; solvothermal method

资金

  1. Council of Scientific and Industrial Research (CSIR), New Delhi, India
  2. [CSC0122]

向作者/读者索取更多资源

Cu-Pt nanocage (CuPt-NC) intermetallic structures have been prepared by an in situ galvanic displacement reaction. The structures are found to be well organized within the framework demarcated with distinguishing arms, having clear edges and corners with a size of similar to 20 nm. The unique nanocage structure possessing large specific surface area and better structural integrity helps to achieve improved electrochemical oxygen reduction reaction activity and stability in alkaline solution in comparison to the commercially available 20 wt % Pt/C. CuPt-NC shows 50 mV positive onset potential shift with significantly higher limiting current in comparison to Pt/C. Interestingly, CuPt-NC has shown 2.9- and 2.5-fold improved mass activity and specific activity, respectively, for ORR at 0.9 V vs RHE in comparison to Pt/C. Moreover, the stability of CuPt-NC has been tested by an accelerated durability test under alkaline conditions. CuPt-NC has been subsequently utilized as the air electrode in a primary Zn-air battery and is found to possess 1.30- and 1.34-fold improved power density and current density at 1 V, respectively, in comparison to the state-of-the-art Pt/C catalyst. In addition, CuPt-NC has shown several hours of constant discharge stability at 20 mA cm(-2) with a specific capacity of 560 mAh gZn(-1) and energy density of 728 Wh kgZn(-1) in the primary Zn-air battery system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据