4.8 Article

Earth-Abundant Copper-Based Bifunctional Electrocatalyst for Both Catalytic Hydrogen Production and Water Oxidation

期刊

ACS CATALYSIS
卷 5, 期 3, 页码 1530-1538

出版社

AMER CHEMICAL SOC
DOI: 10.1021/cs501480s

关键词

electrocatalysis; noble-metal-free electrocatalyst; copper; water oxidation; hydrogen production; bifunctional

资金

  1. National Natural Science Foundation of China [21271166, 21473170]
  2. Fundamental Research Funds for the Central Universities
  3. Program for New Century Excellent Talents in University (NCET)
  4. Young Thousand Talents Program

向作者/读者索取更多资源

The production of hydrogen through water splitting via electrolysis/photocatalysis seems a promising and appealing pathway for clean energy conversion and storage. Herein we report for the first time that a series of water-soluble copper complexes can be used as catalyst precursors to generate the copper-based bifunctional catalyst composite for both hydrogen production and water oxidation reactions. Under an applied cathodic potential, a thin catalyst film was grown on a fluorine-doped tin oxide (FTO) electrode, accompanied by the production of a large amount of hydrogen gas bubbles. Scanning electron microscopy shows the presence of nanoparticulate material on the FTO. Powder X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) results indicated that the materials consist of amorphous cuprous oxide mixed copper hydroxide (H-2-CuCat), which can catalyze water reduction in a copper-free aqueous solution (pH = 9.2) under a low overpotential. Remarkably, under an applied anodic potential, the material can also efficiently catalyze water oxidation to evolve oxygen. The present robust, bifunctional, switchable, and noble-metal-free catalytic material has potential applications in solar water-splitting devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据