4.8 Article

Role of Cu-Mg-Al Mixed Oxide Catalysts in Lignin Depolymerization in Supercritical Ethanol

期刊

ACS CATALYSIS
卷 5, 期 12, 页码 7359-7370

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acscatal.5b02230

关键词

lignin; catalysis; supercritical ethanol; alkylation; Guerbet reaction

资金

  1. New Energy House project of the Eindhoven Energy Institute
  2. Knowledge and Innovation Community InnoEnergy of the European Institute of Innovations and Technology

向作者/读者索取更多资源

We investigated the role of Cu-Mg-Al mixed oxides in depolymerization of soda lignin in supercritical ethanol. A series of mixed oxides with varying Cu content and (Cu+Mg)/Al ratio were prepared. The optimum catalyst containing 20 wt % Cu and having a (Cu+Mg)/Al ratio of 4 yielded 36 wt % monomers without formation of char after reaction at 340 C for 4 h. Comparison with Cu/MgO and Cu--Al2O3 catalysts emphasized the excellent performance of Cu Mg Al oxides. These mixed oxides catalyze the reaction between formaldehyde and ethanol, which limits polymerization reactions between phenolic products and formaldehyde. The combination of Cu and basic sites catalyzes the associated Guerbet and esterification reactions. These reactions also protect lignin side-chains (e.g., aldehyde groups). Lewis acid sites of the catalyst, mainly Cu and Al cations, catalyze C- and O-alkylation reactions that protect phenolic products and phenolic moieties in lignin oligomers. Hydrogen produced by dehydrogenation reactions is involved in hydrogenolysis reactions of the chemical bonds in lignin and also to deoxygenate the monomeric and oligomeric products. Careful investigation of the influence of the acid and base functionalities allows concluding that Guerbet and esterification reactions are more important than alkylation reactions in avoiding formation of heavy products such as char. These insights point out directions for rational design of catalysts for lignin conversion.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据