4.8 Article

ALD of Ultrathin Ternary Oxide Electrocatalysts for Water Splitting

期刊

ACS CATALYSIS
卷 5, 期 3, 页码 1609-1616

出版社

AMER CHEMICAL SOC
DOI: 10.1021/cs501532b

关键词

ALD; electrocatalysts; ternary oxide; MnOx; TiO2; oxygen evolution reaction

资金

  1. Center on Nanostructuring for Efficient Energy Conversion (CNEEC), an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Basic Energy Sciences [DE-SC0001060]
  2. NSF

向作者/读者索取更多资源

Semiconducting oxides, particularly mixtures of different transition-metal oxides, are promising materials for oxygen evolution reaction (OER) catalysts. Assessment of these materials is often complicated by inadequate dispersion of the materials, charge transport limitations, and lack of surface area characterization. Thin films deposited by atomic layer deposition (ALD) present an excellent way to overcome these issues. Here, we present the first work using ALD to investigate ternary oxide electrocatalysts, specifically with the Ti-Mn ternary oxide system. Thin-film mixtures of between 1.4 and 2.8 nm in thickness are successfully synthesized by ALD and show a high degree of mixing. At compositions between similar to 10 and 70% Mn:(Mn+Ti), there is a reduction in ALD growth rate relative to the growth rates of the binary constituents. Moreover, we observe a shift in the chemical binding energies of both Mn and Ti over this composition range. An elevation in the activity of Mn active sites for OER is observed with increasing MnOx content in TiO2, increasing the turnover frequency (TOF) by approximately an order of magnitude. These results are consistent with previous DFT calculations. We also explore the effect of film thickness of the ternary metal oxide on catalytic activity, highlighting how ALD allows for charge transport limitations to be minimized.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据