4.8 Review

Synthetic biopolymer nanocomposites for tissue engineering scaffolds

期刊

PROGRESS IN POLYMER SCIENCE
卷 38, 期 10-11, 页码 1487-1503

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.progpolymsci.2013.06.001

关键词

Biopolymer; Nanocomposites; Tissue engineering; Scaffolds; Mesenchymal stem cell; Nanoparticles

资金

  1. KAKENHI [22656148]
  2. Strategic Research Infrastructure Project of the Ministry of Education, Sports, Science and Technology, Japan
  3. Grants-in-Aid for Scientific Research [22656148] Funding Source: KAKEN

向作者/读者索取更多资源

With tissue engineering we can create biological substitutes to repair or replace failing organs or tissues. Synthetic biopolymer-based nanocomposites are of interest for use in tissue engineering scaffolds due to their biocompatibility and adjustable biodegradation kinetics. The most often utilized synthetic biopolymers for three dimensional scaffolds in tissue engineering are saturated poly(a-hydroxy esters), including poly(lactic acid) (PLA), poly(glycolic acid) (PGA), poly(lactic acid-co-glycolic acid) (PLGA), and poly(epsilon-caprolactone) (PCL). To enhance the mechanical properties and cellular adhesion and proliferation, the incorporation of nanoparticles (e.g., apatite component, carbon nanostructures and metal nanoparticles) has been extensively investigated. At the same time, current research is focused on the interaction between stromal cells and biopolymer interfaces. In this review, current research trends in nanocomposite materials for tissue engineering, including strategies for fabrication of nanocomposite scaffolds with highly porous and interconnected pores are presented. The results of the in vitro cell culture analysis of the cell-scaffold interaction using the colonization of mesenchymal stem cells (MSCs) and degradation of the scaffolds in vitro are also discussed. (C) 2013 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据