4.8 Review

Elastomeric biomaterials for tissue engineering

期刊

PROGRESS IN POLYMER SCIENCE
卷 38, 期 3-4, 页码 584-671

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.progpolymsci.2012.05.003

关键词

Elastomeric biomaterials; Biocompatibility; Biodegradability; Elastic mechanical properties; Tissue engineering

向作者/读者索取更多资源

Biomaterials play a critical role in engineering of tissue constructs, working as an artificial extracellular matrix to support regeneration. Because the elastic stretchability is a major mechanical property of many tissue types, huge efforts have been invested into the development of elastomeric biomaterials that mimic that of native tissue. Indeed, for the repair of most soft tissue types, one of the major problems encountered by biomaterials scientists has been difficulty in simply replicating this complex elasticity. This article provides a comprehensive review on the elastomeric biomaterials used in tissue engineering. Definitions of biomaterials, biocompatibility and elasticity in the context of tissue engineering are introduced. This is followed by systematic review of thermoplastic rubbers, chemically crosslinked elastomers, elastic proteins and elastomer-based ceramic-filled composites. Each section includes a detailed description of the chemical synthesis of the polymer critical to understanding of its unique properties, followed by discussion of its biocompatibility and biodegradability, two essential features of biomaterials in most tissue engineering applications. The mechanical properties and applications in tissue engineering are then reviewed for each polymer in great detail, with identification of specific challenges for its current and ongoing application in the field. Finally, the major achievements and remaining challenges for elastomeric biomaterials are summarized, with emphasis on the most important candidates to date. (C) 2012 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据