4.8 Review

Research progress on polymer-inorganic thermoelectric nanocomposite materials

期刊

PROGRESS IN POLYMER SCIENCE
卷 37, 期 6, 页码 820-841

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.progpolymsci.2011.11.003

关键词

Conductive polymer; Nanocomposites; Seebeck coefficient; Electrical conductivity; Thermal conductivity

资金

  1. National Natural Science Foundation of China [50872095]
  2. foundation of the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology
  3. China Scholarship Council

向作者/读者索取更多资源

A thermoelectric (TE) material is a material where a potential difference is generated as a result of a temperature difference or the corollary of this where a temperature difference is generated when a voltage is applied. These phenomena can be used to generate electricity and/or control temperature. Traditionally, thermoelectric materials are inorganic semiconductors which have been limited in their application by low efficiency and high cost. Since the 1990s, both theoretical and experimental studies have shown that low-dimensional TE materials, such as superlattices and nanowires, can enhance the value of the TE figure of merit (ZT) which is an indicator of TE thermodynamic efficiency. To date it has not been feasible to apply these materials in large-scale energy-conversion processes because of limitations in both their heat transfer efficiency and cost. When compared to inorganic materials, organic conducting polymers possess some unique features, such as low density, low cost, low thermal conductivity, easy synthesis and versatile processability and their use in preparing polymer-inorganic TE nanocomposites appears to have great potential for producing relatively low cost and high-performance TE materials. Recently, an increasing number of studies have reported on polymeric and polymer-inorganic TE nanocomposite materials. The purpose of this paper is to review the research progress on the conducting polymers and their corresponding TE nanocomposites. Its main focus is the TE nanocomposites based on conducting polymers such as polyaniline (PANI), polythiophene (PTH), poly (3, 4-ethylenedioxythiophene): poly (styrenesulfonate) (PEDOT:PSS), as well as other polymers such as polyacetylene (PA), polypyrrole (PPY), polycarbazoles (PC) and polyphenylenevinylene (PPV). Typically, polymer-inorganic TE nanocomposites are produced by physical mixing, solution mixing and in situ polymerization. The key factors that limit the use of these polymers and their polymer-inorganic TE nanocomposites as TE materials are their low ZT values. More recent developments designed to overcome the limitation including, for example, the use of carbon nanotubes and graphenes and the use of computational modelling to accelerate the selection of suitable pairs of conductive polymer and inorganic TE materials to achieve best possible nanocomposites are reviewed. (C) 2011 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据