4.8 Review

Polymeric materials as anion-exchange membranes for alkaline fuel cells

期刊

PROGRESS IN POLYMER SCIENCE
卷 36, 期 11, 页码 1521-1557

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.progpolymsci.2011.04.004

关键词

Ammonium groups; Anion-exchange membrane; Chemical modification; Copolymers; Membranes; Polyelectrolytes; Radical (co)polymerization; Solid alkaline fuel cell

资金

  1. CNRS
  2. Agence Nationale de la Recherche (ANR)
  3. PACo program (Alcapac)
  4. French consortium GDR

向作者/读者索取更多资源

After summarizing the different fuel cells systems, including advantages and drawbacks, this review focuses on the preparation of copolymers and polymeric materials as starting materials for solid alkaline fuel cells membranes. The requirements for such membranes are also summarized. Then, different strategies are given to synthesize anion-exchange polymeric materials containing cationic (especially ammonium) groups. The first pathway focuses on heterogeneous membranes that consist in: (i) polymer blends and composites based on poly(alkene oxide)s and hydroxide salts or polybenzimidazole doped with potassium hydroxide, (ii) organic-inorganic hybrid membranes especially those synthesized via a sol-gel process, and (iii) (semi)interpenetrated networks based on poly(epichlorhydrine), poly(acrylonitrile) and polyvinyl alcohol for example, that have led to new polymeric materials for anion-exchange membranes. The second and main part concerns the homogeneous membranes divided into three categories. The first one consists in materials synthesized from (co)polymers obtained via direct (co)polymerization, for example membranes based on poly(diallyldimethylammonium chloride). The second pathway concerns the modification of polymeric materials via radiografting or chemical reactions. These polymeric materials can be hydrogenated or halogenated. The radiografting of membranes means the irradiation via various sources - electron beam, X and gamma rays, Co-60 and Cs-137 that lead to trapped radicals or macromolecular peroxides or hydroperoxides, followed by the radical graft polymerization of specific monomers such as chloromethyl styrene. The third route deals with the chemical modifications of commercially available hydrogenated aliphatic and aromatic (co)polymers, and the syntheses of fluorinated (co)polymers such as carboxylic and sulfonic perfluoropolymers. In addition, several approaches for the crosslinking of above-mentioned polymeric materials are also reported as this process enhances the properties of the resulting membranes. Moreover, electrochemical and thermal properties of various above ionomers are given and discussed. (C) 2011 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据