4.8 Review

High temperature proton exchange membranes based on polybenzimidazoles for fuel cells

期刊

PROGRESS IN POLYMER SCIENCE
卷 34, 期 5, 页码 449-477

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.progpolymsci.2008.12.003

关键词

High temperature proton exchange membrane; Fuel cell; Polybenzimidazole (PBI); Phosphoric acid; Cross-linking; Durability

资金

  1. European Commission [SES6-CT-2004-502782]
  2. Danish PSO-FU programme [5728]
  3. Danish Agency for Science Technology and Innovation [2104-05-0026]

向作者/读者索取更多资源

To achieve high temperature operation of proton exchange membrane fuel cells (PEMFC), preferably under ambient pressure, acid-base polymer membranes represent an effective approach. The phosphoricacid-doped polybenzimidazole membrane seems so far the most successful system in the field. It has in recent years motivated extensive research activities with great progress. This treatise is devoted to updating the development, covering polymer membrane casting, physicochemical characterizations and fuel cell technologies. To optimize the membrane properties, high molecular weight polymers with synthetically modified or N-substituted structures have been synthesized. Techniques for membrane casting from organic solutions and directly from acid solutions have been developed. Ionic and covalent cross-linking as well as inorganic-organic composites has been explored. Membrane characterizations have been made including spectroscopy, water uptake and acid doping, thermal and oxidative stability, conductivity, electro-osmotic water drag, methanol crossover, solubility and permeability of gases, and oxygen reduction kinetics. Related fuel cell technologies Such as electrode and MEA fabrication have been developed and high temperature PEMFC has been Successfully demonstrated at temperatures of up to 200 degrees C Under ambient pressure. No gas humidification is mandatory, which enables the elimination of the complicated humidification system, compared with Nafion cells. Other operating Features of the PBI cell include easy control of air flow rate, cell temperature and cooling. The PBI cell operating at above 150 degrees C can tolerate up to 1% CO and 10 ppm SO2 in the fuel stream, allowing for simplification of the fuel processing system and possible integration of the fuel cell stack with fuel processing units. Long-term durability with a degradation rate of 5 mu V h(-1) has been achieved Under Continuous operation with hydrogen and air at 150-160 degrees C. With load or thermal cycling, a performance loss of 300 mu V per cycle or 40 mu V h(-1) per operating hour was observed. Further improvement Should be done by, e.g, optimizing the thermal and chemical stability of the polymer, acid-base interaction and acid management, activity and stability of catalyst and more importantly the catalyst support, as well as the integral interface between electrode and membrane. (C) 2009 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据