4.7 Article

Plasmonic light-trapping for Si solar cells using self-assembled, Ag nanoparticles

期刊

PROGRESS IN PHOTOVOLTAICS
卷 18, 期 7, 页码 500-504

出版社

WILEY-BLACKWELL
DOI: 10.1002/pip.1006

关键词

-

资金

  1. Australian Research Council

向作者/读者索取更多资源

We present experimental results for photocurrent enhancements in thin c-Si solar cells due to light-trapping by self-assembled, random Ag nanoparticle arrays. The experimental geometry is chosen to maximise the enhancement provided by employing previously reported design considerations for plasmonic light-trapping. The particles are located on the rear of the cells, decoupling light-trapping and anti-reflection effects, and the scattering resonances of the particles are red-shifted to target spectral regions which are poorly absorbed in Si, by over-coating with TiO2. We report a relative increase in photocurrent of 10% for 22 mu m Si cells due to light-trapping. Incorporation of a detached mirror behind the nanoparticles increases the photocurrent enhancement to 13% and improves the external quantum efficiency by a factor of 5.6 for weakly absorbed light. Copyright (C) 2010 John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据