4.7 Article

Microcrystalline silicon solar cells: effect of substrate temperature on cracks and their role in post-oxidation

期刊

PROGRESS IN PHOTOVOLTAICS
卷 18, 期 7, 页码 491-499

出版社

WILEY
DOI: 10.1002/pip.956

关键词

microcrystalline silicon; cracks; oxygen; post-oxidation; temperature; SIMS; nano-SIMS; SEM; TEM

资金

  1. Swiss National Science Foundation [SNSF 200020-116630]
  2. Swiss Federal Office of Energy [101191]

向作者/读者索取更多资源

Microcrystalline silicon (mu c-Si:H) cells can reach efficiencies up to typically 10% and are usually incorporated in tandem micromorph devices. When cells are grown on rough substrates, cracks can appear in the mu c-Si:H layers. Previous works have demonstrated that these cracks have mainly detrimental effects on the fill factor and open-circuit voltage, and act as had diodes with a high reverse saturation current. In this paper, we clarify the nature of the cracks, their role in post-oxidation processes, and indicate how their density can be reduced. Regular secondary ion mass spectrometry (SIMS) and local nano-SIMS measurements show that these cracks are prone to local post-oxidation and lead to apparent high oxygen content in the layer. Usually the number of cracks can be decreased with an appropriate modification of the substrate surface morphology, but then, the required light scattering effect is reduced due to a lower roughness. This study presents an alternative/complementary way to decrease the crack density by increasing the substrate temperature during deposition. These results, also obtained when performing numerical simulation of the growth process, are attributed to the enhanced surface diffusion of the adatoms at higher deposition temperature. We evaluate the cracks density by introducing a fast method to count cracks with good statistics over approximately 4000 mu m of sample cross-section. This method is proven to be useful to quickly visualize the impact of substrate morphology on the density of cracks in microcrystalline and in micromorph devices, which is an important issue in the manufacturing process of modules. Copyright (C) 2010 John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据