4.7 Article

UV-cured clay/based nanocomposite topcoats for wood furniture: Part I: Morphological study, water vapor transmission rate and optical clarity

期刊

PROGRESS IN ORGANIC COATINGS
卷 77, 期 1, 页码 1-11

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.porgcoat.2013.03.021

关键词

Organoclay; UV-cured nanocomposite coating; Morphology; Water vapor transmission rate; Optical clarity

资金

  1. Conseil de recherches en sciences naturelles et en genie (CRSNG)
  2. ArboraNano
  3. NanoQuebec

向作者/读者索取更多资源

The combination of UV-curing technology and nanotechnology has been applied in this study to synthetize by in situ photopolymerization method, UV-cured topcoats based on acrylate matrix reinforced (1 and 3 wt%) individually with three different types of commercial organoclays, namely Cloisite 10A (C10A), Cloisite 15A (C15A) and Cloisite 30B (C30B). The morphological study was quantitatively and qualitatively performed by X-ray diffraction (XRD) and by transmission electron microscopy (TEM) respectively. Water vapor transmission rate (WVTR) and optical clarity of these nanocomposites were also assessed. TEM images obtained for those UV-cured coatings respectively reinforced with C10A and C30B showed that the absence of diffraction peaks in XRD patterns of these samples do not mean necessarily a possible exfoliation of their layered silicate nanoparticles by acrylate matrix (AM). Indeed, according to TEM images, we believe that C30B was not dispersible in the AM; while both UV-cured nanocomposites containing C10A and C15A respectively seemed to have an intercalated morphology regardless of the clay content (1 and 3 wt%). All the organoclays used in this study have had an effect on both WVTR and optical clarity. The tortuous path created by the organoclay dispersed into the AM, by retarding the progress of water vapor through a sample, best explain the decrease of WVTR whereas the decrease of optical clarity is due to the light scattering by organoclay particles. Based on the above mentioned results, among the three different reinforcing agents used in this study, C10A appears to be the ideal organoclay for practical application. Crown Copyright (C) 2013 Published by Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据