4.6 Article Proceedings Paper

Preliminary forecasts of Pacific bigeye tuna population trends under the A2 IPCC scenario

期刊

PROGRESS IN OCEANOGRAPHY
卷 86, 期 1-2, 页码 302-315

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.pocean.2010.04.021

关键词

-

向作者/读者索取更多资源

An improved version of the spatial ecosystem and population dynamics model SEAPODYM was used to investigate the potential impacts of global warming on tuna populations. The model included an enhanced definition of habitat indices, movements, and accessibility of tuna predators to different vertically migrant and non-migrant micronekton functional groups. The simulations covered the Pacific basin (model domain) at a 2 degrees x 2 degrees geographic resolution. The structure of the model allows an evaluation from multiple data sources, and parameterization can be optimized by adjoint techniques and maximum likelihood using fishing data. A first such optimized parameterization was obtained for bigeye tuna (Thunnus obesus) in the Pacific Ocean using historical catch data for the last 50 years and a hindcast from a coupled physical-biogeochemical model driven by the NCEP atmospheric reanalysis. The parameterization provided very plausible biological parameter values and a good fit to fishing data from the different fisheries, both within and outside the time period used for optimization. We then employed this model to forecast the future of bigeye tuna populations in the Pacific Ocean. The simulation was driven by the physical-biogeochemical fields predicted from a global marine biogeochemistry - climate simulation. This global simulation was performed with the IPSL climate model version 4 (IPSL-CM4) coupled to the oceanic biogeochemical model PISCES and forced by atmospheric CO2, from historical records over 1860-2000, and under the SRES A2 IPCC scenario for the 21st century (i.e. atmospheric CO2 concentration reaching 850 ppm in the year 2100). Potential future changes in distribution and abundance under the IPCC scenario are presented but without taking into account any fishing effort. The simulation showed an improvement in bigeye tuna spawning habitat both in subtropical latitudes and in the eastern tropical Pacific (ETP) where the surface temperature becomes optimal for bigeye tuna spawning. The adult feeding habitat also improved in the ETP due to the increase of dissolved oxygen concentration in the sub-surface allowing adults to access deeper forage. Conversely, in the Western Central Pacific the temperature becomes too warm for bigeye tuna spawning. The decrease in spawning is compensated by an increase of larvae biomass in subtropical regions. However, natural mortality of older stages increased due to lower habitat values (too warm surface temperatures, decreasing oxygen concentration in the sub-surface and less food). This increased mortality and the displacement of surviving fish to the eastern region led to stable then declining adult biomass at the end of the century. (C) 2010 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据