4.8 Article Proceedings Paper

Miniaturized single-crystalline fcc metals deformed in tension: New insights in size-dependent plasticity

期刊

PROGRESS IN MATERIALS SCIENCE
卷 54, 期 6, 页码 664-688

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.pmatsci.2009.03.005

关键词

-

向作者/读者索取更多资源

The continuing trend of miniaturizing materials in many modern technological applications has led to a strong demand for understanding the complex mechanical properties of materials at small length scales. This review focuses on the recent understanding of the size-dependent plasticity in single-crystal face-centered cubic (ficc) metals as model systems where microstructural constraints due to grain boundaries can be neglected. The small dimensions of several microns down to some tens of nanometers require sophisticated measurement approaches which are critically revisited. Size effects of the flow stresses are compared for single-crystal wires and single-crystalline thin films on compliant or stiff substrates. The interpretation of the results is based on recent insights on dislocation nucleation, mobility, and reactions stemming from in situ transmission electron microscopy studies or discrete dislocation dynamics simulations. Commonalities as well as differences are discussed with the attempt to explain the size effects in tensile testing at small length scales. (C) 2009 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据