4.8 Review

Giant magnetoimpedance materials: Fundamentals and applications

期刊

PROGRESS IN MATERIALS SCIENCE
卷 53, 期 2, 页码 323-420

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.pmatsci.2007.05.003

关键词

-

资金

  1. Engineering and Physical Sciences Research Council [EP/C532392/1] Funding Source: researchfish

向作者/读者索取更多资源

Since the discovery of the magnetoimpedance (MI) effect just over a decade ago, international research interest into the giant magnetoimpedance (GMI) effect has been growing. This article aims to provide a comprehensive summary of the GMI topic, encompassing fundamental understanding of the GMI phenomena, the processing and properties of GMI materials and the design and application of GMI-based magnetic sensors. The paper starts with the definition of GMI and an assessment of the current theoretical understanding of the frequency dependence of GMI. Then a detailed description of processing methods for the production of amorphous and nanocrystalline GMI materials in the form of wires, ribbons and thin films is given, with an examination of the advantages and disadvantages of each technique. Properties of existing GMI materials including magnetic, mechanical, electrical and chemical properties are described, and a correlation between domain structures and magnetic properties is established. The influences of measuring and processing parameters on the GMI effect are systematically analysed and the underlying physical origins of hysteretic and asymmetric phenomena of GMI are explained. This enables the selection of optimal conditions to design high-performance GMI-based sensors. After discussing the material selection criteria, a range of candidate materials are evaluated and nominated for the design of GMI-based sensors. Finally, a variety of potential applications of GMI-based magnetic sensors are presented with an outlook of future research development in this field. (C) 2007 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据