4.3 Review

Electrophysiology of pancreatic β-cells in intact mouse islets of Langerhans

期刊

PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY
卷 107, 期 2, 页码 224-235

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.pbiomolbio.2011.06.009

关键词

Pancreas; Beta-cell; Insulin; Ion channels; Glucose; Electrical activity

资金

  1. Wellcome Trust
  2. British MRC
  3. Diabetes UK

向作者/读者索取更多资源

When exposed to intermediate glucose concentrations (6-16 mol/l), pancreatic beta-cells in intact islets generate bursts of action potentials (superimposed on depolarised plateaux) separated by repolarised electrically silent intervals. First described more than 40 years ago, these oscillations have continued to intrigue beta-cell electrophysiologists. To date, most studies of beta-cell ion channels have been performed on isolated cells maintained in tissue culture (that do not burst). Here we will review the electrophysiological properties of beta-cells in intact, freshly isolated, mouse pancreatic islets. We will consider the role of ATP-regulated K(+)-channels (K(ATP)-channels), small-conductance Ca(2+)-activated K(+)-channels and voltage-gated Ca(2+)-channels in the generation of the bursts. Our data indicate that K(ATP)-channels not only constitute the glucose-regulated resting conductance in the beta-cell but also provide a variable K(+)- conductance that influence the duration of the bursts of action potentials and the silent intervals. We show that inactivation of the voltage-gated Ca(2+)-current is negligible at voltages corresponding to the plateau potential and consequently unlikely to play a major role in the termination of the burst. Finally, we propose a model for glucose-induced beta-cell electrical activity based on observations made in intact pancreatic islets. Crown Copyright (C) 2011 Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据