4.8 Article

Visualization of electrochemically driven solid-state phase transformations using operando hard X-ray spectro-imaging

期刊

NATURE COMMUNICATIONS
卷 6, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/ncomms7883

关键词

-

资金

  1. NSF [DMR-1106184]
  2. UW-Madison WEI Seed Grant
  3. Research Corporation SciaLog Award
  4. US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886]
  5. Laboratory Directed Research and Development (LDRD) program at Brookhaven National Laboratory
  6. NorthEast Center for Chemical Energy Storage (NECCES), an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Basic Energy Sciences [DE-SC0012583]
  7. Division Of Materials Research
  8. Direct For Mathematical & Physical Scien [1106184] Funding Source: National Science Foundation

向作者/读者索取更多资源

In situ techniques with high temporal, spatial and chemical resolution are key to understand ubiquitous solid-state phase transformations, which are crucial to many technological applications. Hard X-ray spectro-imaging can visualize electrochemically driven phase transformations but demands considerably large samples with strong absorption signal so far. Here we show a conceptually new data analysis method to enable operando visualization of mechanistically relevant weakly absorbing samples at the nanoscale and study electrochemical reaction dynamics of iron fluoride, a promising high-capacity conversion cathode material. In two specially designed samples with distinctive microstructure and porosity, we observe homogeneous phase transformations during both discharge and charge, faster and more complete Li-storage occurring in porous polycrystalline iron fluoride, and further, incomplete charge reaction following a pathway different from conventional belief. These mechanistic insights provide guidelines for designing better conversion cathode materials to realize the promise of high-capacity lithium-ion batteries.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据