4.6 Article

Stabilizing hyperactivated lecitase structures through physical treatment with ionic polymers

期刊

PROCESS BIOCHEMISTRY
卷 49, 期 9, 页码 1511-1515

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.procbio.2014.05.009

关键词

Lecitase; Enzyme hyperactivation; Detergents; PEI; Solid-phase physical modification; Bioimprinting

资金

  1. Spanish Government [CTQ2009-07568, CTQ2013-41507-R]
  2. CNPq (Brazil)

向作者/读者索取更多资源

Lecitase Ultra has been covalently immobilized on cyanogen bromide cross-linked 4% agarose (CNBr) beads, maintaining 70% of the initial activity. The activity of the immobilized enzyme was improved in the presence of Triton X-100, sodium dodecyl sulfate (SDS), and cetyltrimethyl ammonium bromide (CTAB) (e.g., up to 800% when using CTAB). However, CTAB and Triton X-100 presented a negative effect on enzyme stability even at low concentrations, and SDS cannot be used for a long time at 1% concentration. To maintain the hyperactivated conformation of the enzyme in the absence of detergent, ionic polymers were added during incubation of the immobilized enzyme in the presence of detergents. Coating the immobilized enzyme with polyethylenimine in aqueous buffer (PEI) produced a 3-fold increase in enzyme activity. However, in the presence of 0.1% SDS (v/v), this coating produced a 50-fold increase in enzyme activity. Using PEI and 0.01% (v/v) CTAB, the Lecitase activity decreased to 10%. Using irreversible inhibitors, it could be shown that the PEI/SDS-CNBr-Lecitase preparation allowed its catalytic Ser to be more accessible to the reaction medium than the unmodified CNBr-Lecitase. (C) 2014 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据