4.7 Article

Trophic interactions among vertebrate guilds and plants shape global patterns in species diversity

出版社

ROYAL SOC
DOI: 10.1098/rspb.2018.0949

关键词

biotic interaction; bottom-up control; top-down control; historical contingency; species coexistence; structural equation model

资金

  1. National Natural Science Foundation of China [31670439]
  2. East China Normal University
  3. European Research Council [ERC-2012-StG-310886-HISTFUNC]

向作者/读者索取更多资源

Trophic interactions play critical roles in structuring biotic communities. Understanding variation in trophic interactions among systems provides important insights into biodiversity maintenance and conservation. However, the relative importance of bottom-up versus top-down trophic processes for broad-scale patterns in biodiversity is poorly understood. Here, we used global datasets on species richness of vascular plants, mammals and breeding birds to evaluate the role of trophic interactions in shaping large-scale diversity patterns. Specifically, we used non-recursive structural equation models to test for top-down and bottom-up forcing of global species diversity patterns among plants and trophic guilds of mammals and birds (carnivores, invertivores and herbivores), while accounting for extrinsic environmental drivers. The results show that trophic linkages emerged as being more important to explaining species richness than extrinsic environmental drivers. In particular, there were strong, positive top-down interactions between mammal herbivores and plants, and moderate to strong bottom-up and/or top-down interactions between herbivores/invertivores and carnivores. Estimated trophic interactions for separate biogeographical regions were consistent with global patterns. Our findings demonstrate that, after accounting for environmental drivers, large-scale species richness patterns in plant and vertebrate taxa consistently support trophic interactions playing a major role in shaping global patterns in biodiversity. Furthermore, these results suggest that top-down forces often play strong complementary roles relative to bottom-up drivers in structuring biodiversity patterns across trophic levels. These findings underscore the importance of integrating trophic forcing mechanisms into studies of biodiversity patterns.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据