4.5 Article

A depth-averaged debris-flow model that includes the effects of evolving dilatancy. II. Numerical predictions and experimental tests

出版社

ROYAL SOC
DOI: 10.1098/rspa.2013.0820

关键词

hyperbolic problems; debris flow; landslide; granular-fluid mixtures

向作者/读者索取更多资源

We evaluate a new depth-averaged mathematical model that is designed to simulate all stages of debris-flow motion, from initiation to deposition. A companion paper shows how the model's five governing equations describe simultaneous evolution of flow thickness, solid volume fraction, basal pore-fluid pressure and two components of flow momentum. Each equation contains a source term that represents the influence of state-dependent granular dilatancy. Here, we recapitulate the equations and analyse their eigenstructure to show that they form a hyperbolic system with desirable stability properties. To solve the equations, we use a shock-capturing numerical scheme with adaptive mesh refinement, implemented in an open-source software package we call D-Claw. As tests of D-Claw, we compare model output with results from two sets of large-scale debris-flow experiments. One set focuses on flow initiation from landslides triggered by rising pore-water pressures, and the other focuses on downstream flow dynamics, runout and deposition. D-Claw performs well in predicting evolution of flow speeds, thicknesses and basal pore-fluid pressures measured in each type of experiment. Computational results illustrate the critical role of dilatancy in linking coevolution of the solid volume fraction and pore-fluid pressure, which mediates basal Coulomb friction and thereby regulates debris-flow dynamics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据