4.5 Article

The decay of flexural-gravity waves in long sea ice transects

出版社

ROYAL SOC
DOI: 10.1098/rspa.2009.0187

关键词

flexural-gravity waves; sea ice; scattering; long transects

资金

  1. Government funding administered by the Royal Society of New Zealand
  2. University of Otago

向作者/读者索取更多资源

Flexural oscillations of floating sea ice sheets induced by ocean waves travelling at the boundary between the ice and the water below can propagate great distances. But, by virtue of scattering, changes of ice thickness and other properties encountered during the journey affect their passage, notwithstanding attenuation arising from several other naturally occurring agencies. We describe here a two-dimensional model that can simulate wave scattering by long (approx. 50 km) stretches of inelastic sea ice, the goal being to replicate heterogeneity accurately while also assimilating supplementary processes that lead to energy loss in sea ice at scales that are amenable to experimental validation. In work concerned with scattering from solitary or juxtaposed stylized features in the sea ice canopy, reflection and transmission coefficients are commonly used to quantify scattering, but on this occasion, we use the attenuation coefficient as we consider that it provides a more helpful description when dealing with long sequences of adjoining scatterers. Results show that scattering and viscosity both induce exponential decay and we observe three distinct regimes: (i) low period, where scattering dominates, (ii) high period, where viscosity dominates, and (iii) a transition regime. Each regime's period range depends on the sea ice properties including viscosity, which must be included for the correct identification of decay rate.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据