4.4 Article

microRNA-32 induces radioresistance by targeting DAB2IP and regulating autophagy in prostate cancer cells

期刊

ONCOLOGY LETTERS
卷 10, 期 4, 页码 2055-2062

出版社

SPANDIDOS PUBL LTD
DOI: 10.3892/ol.2015.3551

关键词

microRNA-32; DAB2IP; autophagy; apoptosis; radioresistance; prostate cancer

类别

向作者/读者索取更多资源

The aberrant expression of microRNAs (miRNAs/miRs) has been found in numerous cancer types. miR-32 is an oncomiR in prostate cancer (PCa), however, the mechanisms by which miR-32 functions as a regulator of radiotherapy response and resistance in PCa are largely unknown. In the present study, it was found that DAB2 interacting protein (DAB2IP), the miR-32-dependent tumor-suppressor gene, was downregulated and induced autophagy and inhibited radiotherapy-induced apoptosis in PCa cells. miR-32 expression was upregulated or overexpressed in PCa, and miR-32 inhibited DAB2IP expression through a direct binding site within the DAB2IP 3' untranslated region. miR-32 mimics enhanced tumor cell survival and decreased radiosensitivity in the PCa cells, which were reversed by miR-32 inhibitor. Flow cytometric analysis revealed that overexpressed miR-32, consistent with the DAB2IP-knockdown results, reduced ionizing radiation (IR)-induced cell apoptosis, which was restored by 4 nM brefeldin A treatment. More significantly, the overexpression of miR-32 and the knockdown of DAB2IP enhanced autophagy in the IR-treated PCa cells. miR-32 regulated the expression of autophagy-related proteins, such as DAB2IP, Beclin 1 and Light chain 3 beta I/II as well as phosphorylation of S6 kinase and mammalian target of rapamycin. In conclusion, these data provide novel insights into the mechanisms governing the regulation of DAB2IP expression by miR-32 and their possible contribution to autophagy and radioresistance in PCa.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据