4.8 Article

Insights into autophagosome biogenesis from structural and biochemical analyses of the ATG2A-WIPI4 complex

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1811874115

关键词

autophagy; ATG2; membrane tethering; single-particle analysis; chemical cross-linking coupled with mass spectrometry

资金

  1. NIH [GM092740, DP2EB020402]
  2. European Research Council Advanced Grant [670821: Proteomics4D]

向作者/读者索取更多资源

Autophagy is an enigmatic cellular process in which double-membrane compartments, called autophagosomes, form de novo adjacent to the endoplasmic reticulum (ER) and package cytoplasmic contents for delivery to lysosomes. Expansion of the precursor membrane phagophore requires autophagy-related 2 (ATG2), which localizes to the PI3P-enriched ER-phagophore junction. We combined single-particle electron microscopy, chemical cross-linking coupled with mass spectrometry, and biochemical analyses to characterize human ATG2A in complex with the PI3P effector WIPI4. ATG2A is a rod-shaped protein that can bridge neighboring vesicles through interactions at each of its tips. WIPI4 binds to one of the tips, enabling the ATG2A-WIPI4 complex to tether a PI3P-containing vesicle to another PI3P-free vesicle. These data suggest that the ATG2A-WIPI4 complex mediates ER-phagophore association and/or tethers vesicles to the ER-phagophore junction, establishing the required organization for phagophore expansion via the transfer of lipid membranes from the ER and/or the vesicles to the phagophore.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据