4.8 Article

Anaerobic methane oxidation coupled to denitrification is the dominant methane sink in a deep lake

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1411617111

关键词

n-damo; M. oxyfera-like bacteria; NC-10 bacteria; microsensor profiles; Lake Constance

资金

  1. Deutsche Forschungsgemeinschaft, Bonn-Bad Godesberg Project [Schi180/14]
  2. University of Konstanz

向作者/读者索取更多资源

Anaerobic methane oxidation coupled to denitrification, also known as nitrate/nitrite-dependent anaerobic methane oxidation (n-damo), was discovered in 2006. Since then, only a few studies have identified this process and the associated microorganisms in natural environments. In aquatic sediments, the close proximity of oxygen-and nitrate-consumption zones can mask n-damo as aerobic methane oxidation. We therefore investigated the vertical distribution and the abundance of denitrifying methanotrophs related to Candidatus Methylomirabilis oxyfera with cultivation-independent molecular techniques in the sediments of Lake Constance. Additionally, the vertical distribution of methane oxidation and nitrate consumption zones was inferred from high-resolution microsensor profiles in undisturbed sediment cores. M. oxyfera-like bacteria were virtually absent at shallow-water sites (littoral sediment) and were very abundant at deep-water sites (profundal sediment). In profundal sediment, the vertical distribution of M. oxyfera-like bacteria showed a distinct peak in anoxic layers that coincided with the zone of methane oxidation and nitrate consumption, a strong indication for n-damo carried out by M. oxyfera-like bacteria. Both potential n-damo rates calculated from cell densities (660-4,890 mu mol CH4.m(-2).d(-1)) and actual rates calculated from microsensor profiles (31-437 mu mol CH4.m(-2).d(-1))were sufficiently high to prevent methane release from profundal sediment solely by this process. Additionally, when nitrate was added to sediment cores exposed to anoxic conditions, the n-damo zone reestablished well below the sediment surface, completely preventing methane release from the sediment. We conclude that the previously overlooked n-damo process can be the major methane sink in stable freshwater environments if nitrate is available in anoxic zones.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据