4.8 Article

Discovery of LPMO activity on hemicelluloses shows the importance of oxidative processes in plant cell wall degradation

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1323629111

关键词

biorefinery; metallo enzymes; GH61; CBM33

资金

  1. Norwegian Research Council [216162, 214613]
  2. Seventh Framework Programme of the European Union through the project Waste2Go with the European Commission [308363]
  3. Novo Nordisk Fonden [NNF12OC0000771] Funding Source: researchfish

向作者/读者索取更多资源

The recently discovered lytic polysaccharide monooxygenases (LPMOs) are known to carry out oxidative cleavage of glycoside bonds in chitin and cellulose, thus boosting the activity of well-known hydrolytic depolymerizing enzymes. Because biomass-degrading microorganisms tend to produce a plethora of LPMOs, and considering the complexity and copolymeric nature of the plant cell wall, it has been speculated that some LPMOs may act on other substrates, in particular the hemicelluloses that tether to cellulose microfibrils. We demonstrate that an LPMO from Neurospora crassa, NcLPMO9C, indeed degrades various hemicelluloses, in particular xyloglucan. This activity was discovered using a glycan microarray-based screening method for detection of substrate specificities of carbohydrate-active enzymes, and further explored using defined oligomeric hemicelluloses, isolated polymeric hemicelluloses and cell walls. Products generated by NcLPMO9C were analyzed using high performance anion exchange chromatography and multidimensional mass spectrometry. We show that NcLPMO9C generates oxidized products from a variety of substrates and that its product profile differs from those of hydrolytic enzymes acting on the same substrates. The enzyme particularly acts on the glucose backbone of xyloglucan, accepting various substitutions (xylose, galactose) in almost all positions. Because the attachment of xyloglucan to cellulose hampers depolymerization of the latter, it is possible that the beneficial effect of the LPMOs that are present in current commercial cellulase mixtures in part is due to hitherto undetected LPMO activities on recalcitrant hemicellulose structures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据