4.8 Article

Object and spatial mnemonic interference differentially engage lateral and medial entorhinal cortex in humans

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1411250111

关键词

-

资金

  1. National Institute on Aging Grants [P50 AG05146, R01 AG034613]
  2. National Science Foundation Graduate Research Fellowship [DGE1232825]

向作者/读者索取更多资源

Recent models of episodic memory propose a division of labor among medial temporal lobe cortices comprising the parahippocampal gyrus. Specifically, perirhinal and lateral entorhinal cortices are thought to comprise an object/item information pathway, whereas parahippocampal and medial entorhinal cortices are thought to comprise a spatial/contextual information pathway. Although several studies in human subjects have demonstrated a perirhinal/parahippocampal division, such a division among subregions of the human entorhinal cortex has been elusive. Other recent work has implicated pattern separation computations in the dentate gyrus and CA3 subregions of the hippocampus as a mechanism supporting the resolution of mnemonic interference. However, the nature of contributions of medial temporal lobe cortices to downstream hippocampal computations is largely unknown. We used high-resolution fMRI during a task selectively taxing mnemonic discrimination of object identity or spatial location, designed to differentially engage the two information pathways in the medial temporal lobes. Consistent with animal models, we demonstrate novel evidence for a domain-selective dissociation between lateral and medial entorhinal cortex in humans, and between perirhinal and parahippocampal cortex as a function of information content. Conversely, hippocampal dentate gyrus/CA3 demonstrated signals consistent with resolution of mnemonic interference across domains. These results provide insight into the information processing capacities and hierarchical interference resolution throughout the human medial temporal lobe.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据